138 research outputs found

    Spatial summation of individual cones in human color vision.

    Get PDF
    The human retina contains three classes of cone photoreceptors each sensitive to different portions of the visual spectrum: long (L), medium (M) and short (S) wavelengths. Color information is computed by downstream neurons that compare relative activity across the three cone types. How cone signals are combined at a cellular scale has been more difficult to resolve. This is especially true near the fovea, where spectrally-opponent neurons in the parvocellular pathway draw excitatory input from a single cone and thus even the smallest stimulus projected through natural optics will engage multiple color-signaling neurons. We used an adaptive optics microstimulator to target individual and pairs of cones with light. Consistent with prior work, we found that color percepts elicited from individual cones were predicted by their spectral sensitivity, although there was considerable variability even between cones within the same spectral class. The appearance of spots targeted at two cones were predicted by an average of their individual activations. However, two cones of the same subclass elicited percepts that were systematically more saturated than predicted by an average. Together, these observations suggest both spectral opponency and prior experience influence the appearance of small spots

    Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope.

    Get PDF
    We demonstrate the capability of a new generation adaptive optics scanning laser ophthalmoscope (AOSLO) to resolve cones and rods in normal subjects, and confirm our findings by comparing cone and rod spacing with published histology measurements. Cone and rod spacing measurements are also performed on AOSLO images from two different diseased eyes, one affected by achromatopsia and the other by acute zonal occult outer retinopathy (AZOOR). The potential of AOSLO technology in the study of these and other retinal diseases is illustrated

    MEMS Deformable Mirror for Ophthalmic Imaging

    Get PDF
    ABSTRACT A MEMS deformable mirror has recently been employed in the AO system of an adaptive optics scanning laser ophthalmoscope (AOSLO). MEMS allows for a more compact, efficient and effective system. The AO system in the AOSLO operates with a modal closed loop. Aberrations after AO reduce the wave aberration to less than 0.1 microns RMS in most eyes. Results show improved resolution, brightness and contrast. Images of patches of retina show a well resolved cone photoreceptor mosaic as they change in size with eccentricities ranging from 0.6 degrees to 4.23 degrees from the fovea

    The retinal and perceived locus of fixation in the human visual system

    Get PDF
    Due to the dramatic difference in spatial resolution between the central fovea and the surrounding retinal regions, accurate fixation on important objects is critical for humans. It is known that the preferred retinal location (PRL) for fixation of healthy human observers rarely coincides with the retinal location with the highest cone density. It is not currently known, however, whether the PRL is consistent within an observer or is subject to fluctuations and, moreover, whether observers' subjective fixation location coincides with the PRL. We studied whether the PRL changes between days. We used an adaptive optics scanning laser ophthalmoscope to project a Maltese cross fixation target on an observer's retina and continuously imaged the exact retinal location of the target. We found that observers consistently use the same PRL across days, regardless of how much the PRL is displaced from the cone density peak location. We then showed observers small stimuli near the visual field location on which they fixated, and the observers judged whether or not the stimuli appeared in fixation. Observers' precision in this task approached that of fixation itself. Observers based their judgment on both the visual scene coordinates and the retinal location of the stimuli. We conclude that the PRL in a normally functioning visual system is fixed, and observers use it as a reference point in judging stimulus locations.Peer reviewe

    Optical fiber properties of individual human cones,"

    Get PDF
    The tuning properties of the ensemble of cone photoreceptors is due to the tuning properties of individual cones convolved with the disarray in pointing direction between the cones. We used direct imaging with the Rochester adaptive optics ophthalmoscope to directly image these properties in individual cones in living human eyes. We found that cone disarray is very small, accounting for less than 1% of the breadth of the tuning function of an ensemble of cones. The implication is that the optical fiber properties of an ensemble of cones mimic the tuning properties of a single cone
    • …
    corecore